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ABSTRACT

The introduction of a discounting term into the objective functional
can be troublesome in terms of analysis by the standard maximum principle
formulation. This is because it renders the Hamiltonian and the adjoint
equations depend explicitly on time. 1In finite horizon problems it makes
the switching point analysis difficult. 1In case of infinite horizon, which
is usual in economic problems, it does not admit long~run stationary equilibriums.
A technique discussed by Arrow [1] to alleviate these difficulties is applied
to various standard control problems occuring in economics and management
science. This transforms the Hamiltonian and the corresponding adjoint
system into an explicitly time-independent form and hence autonomous in
all bu: one case. A natural consequence of the transformation is current-
value interpretations of the Hamiltonian and the adjoint variables. Finally,

it is noted that for the transformed systems so obtained, Hamiltonian # =

constant, no longer provides the first integral of the resulting boundary-

value problems as usual in the autonomous cases,




1. A Continuous Optimal Control Probleml/

Consider a system, economic or other, evolving in time. At any time
t, the system is in some state, which can be described by a vector x(t).

In an optimization problem, there is some possibility of controlling
the system. Thus, at any time t, there is a vector u(t) which a decision
maker can choose from a given set Q(t). The u(t) are known as control
variables.

The dynamics of the system is described by differential equations

known as state equations.

(1.1) x = £(x,u,t) ; x(0) = x

By suit.:ble choices of controls over time, alternative histories of
the process can be achieved. As is usual in economic analysis, we assume
that these histories can be valued in some way. Usually this is done by
assuming, at each moment t, a felicity function F(x(t),u(t),t) and then
summing these felicities over time,

Furthermore, in a finite horizon problem, since the horizon T is

not the end of the world, the states at T will usually have some value,
This value will be referred to as scrap value and will be denoted by a
function S(x(T),T). Now the optimal control problem is to
(1.2) maximize S(x(T),T) + jT F(x(t),u(t),t)dt
{uce)en(e)} o
subject to (1.1).

For convenience, we also define the return function by

T
(1.3) V(x,t ) = max {S(x(T),T) + [ F(x(t),u(t),t)dt} .

u(t) to

The usual Hamiltonian_il, in this case, is

(1.4) L= F(x,u,t) + pf(x,u,t)
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where the vector of adjoint variables p satisfies
ST A = 38
(1.5) P sx > PM =3 -

From the Hamilton-Jacobi Theory, we also know that

oV

(1.6) P =i

Therefore, we can call p the marginal return v- -.r.

Since, in economics, it is customery to assume that, in some relevant

sense, future felicities are discounted relative to the present. To include

this feature, let «(t) be the discount rate, we can restate our problem
as
T
(1.7) maximize  S(x(T),T)a(T) + [ a(t) F(x(t),u(t),t)dt
uef 0

subject to (1.1).
The return function definition (1.3) will be correspondingly modified

to be

T
(1.8) V(x,t ) = max [S(x(T),T)(T) + [ a(t) F(x(t),u(t),t)de] .
° u(t) to

Since the return function in (1,8) is evaluated in terms of present

value at time t = 0, we can divide it by a(to) to obtain the current-value

return function:

(1.9) Wit ) = V00t
a(to)
The usual Hamiltonian .M will be

(1.10) 4 = a(t) F(x,u,t) + pf(x,u,t)

where the adijoint vector or marginal returns p satisfy

. S : \
(1.11) P = -%x—= -a(t) % -p -;j—i , p(T) = a(T) ———a:?,r)

and from the Hamilton-Jacobi theory,

(1.12) P =i .
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Since W in (1.9) is a current-value return function, we can obtain
current-value marginal returns, X\, by differentiating (1.9) with respect

to the state x, i.e.,

S G- /A §

(1.13) P % T X

= pla .

Substituting p from (1.13) in (1.10) and then dividing (1.10) by a(t), we

get, what we define to be the current-value Hamiltonian #. Thus,

(1.14) H = Ha(t) = F(x,u,t) + Af(x,u,t) .

Since o(t) is positive, the controls chosen to maximize ;}, as in
Pontryagin's maximum principle, are same as those chosen to maximize }Z.
All we have to do now to make the transformation complete is to express the

current value adjoint vector ) in terms of current-value Hamiltonian ¥,

From (1.11) and (1.13),

dla(eln] _ e _ _ dla(e) M) - 38
(1.15) at ax + o o ;o @(TIX(T) o(T) (1)

On dividing through by «, we obtain

where,

(1.17) q(t) = - &(e)/a(t) . ;
Note that q(t) is essentially a short-term interest rate corresponding to
the system of discount factors, o(t). The definition (1.17) can be integrated

to yield the familiar form

t
SIGLE
(1.18) a(t) =e 0

for discounting derived from a short-term interest rate varying in time.
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Infinite Horizon Case

In case of infinite horizon, which is frequently the case in economic

problems, the objective function is
o«

(1.19) max | a(t) F(x(t),u(t),t)dt
ueQt 0

subject to (1.1).
Where, for (1.19) to converge for a constant felicity F, one requires

xR

(1.20) [ at)at < =,
0

It is frequently appropriate to make an assumption of statiomarity,

i.e.
F(x,u,t) = F{x,u)
(1.21) f(x,u,t) = £(x,u)
q(t) =r

where the right hand sides are independent of t with r constant, It follows
from its definition (1.17) and the convention &(0) = 1, that
(1.22) at) =e "%,  r>0 for (1.20).

with (1.21), we can rewrite (1.1), (l.14), and (1.16) as

It

(1.23) x = f(x,u) , x(0) =x
(1.24) M= F(x,u) + Af(x,u)

(1.25) L=y - 2

dx

Note that (1.25) is written without the transversality condition in (1.16).2/

Since t does not enter explicitly into the system (1,23 - 1,25)
such a system is termed autonomous.l/ In such cases, considerable interest
is usually focused on its stationary points or equilibria, where all motion
ceases; i.e., the values of x and )\ for which # = 0 and ) = 0. This

notion in economics is that of long-run stationary equilibrium. This is

defined by the triple (;, K, ;) satisfying,

B ooy




£(x,u) = 0
T . QX
(1.26) A = =

M (x,y.0) > Ax,u,\), VueQ

. . 4/
Now we will state an important sufficiency theorem without proof.=

A Sufficiency Theorem

* %* .
Let {x*(t), A (t), u (t)} be a Pontryagin path, (a path satisfying

the maximum principle), i.e,

ok * K *
x =f{x,u), x(0)=x
sk % JY

(1.27) A=A P

% % * * *
M, u,r)> Ax, u, }), Pued

Further assume,

(1.28) N o(x,?x = max £ (x,4,A) is a concave function of x for given )\, and
u
% -
x (t) - x
* — -— — e —
(1.29) A () A, A2 05 (x,),u) from (1.26)

Yo —
u (t) 2 u

* * * .
Then, the Pontryagin path {x (t), A (t), u (t)} is an optimal path.

2, An Infinite Horizon Discrete Qptimal Control Problemél

For the discrete case, we will treat the following control problem.

(2.1) max T o Ft(X(t),U(t))
uel) t=o

subject to the difference equation
(2.2) Ax(t) = x(t+l) - x(t) = ft(x(t),u(t)); x(0) = x
where, for (2.1) to converge for a constant felicity F, we require a rela-

tion analogous to (1.20) in the continuous case, i.e.,
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(2.3) T a <o
t
t=0

Assume also that o = 1.

Standard Hamiltonian Qi?) Formulation

To form % , we adjoin a vector of present value adjoint variables
p(t+l), to the state equation (2.2), and add this with the summand in
(2.1). Thus:

(2.4) X =a F_(x,u) + p(t+l1)f_(x,u)
t t t
the
where, from the theory of/maximum principle, the vector p satisfies the

difference equation:

-—

3 M

(2.5) dp(E) = - ()

Current-Value Hamiltonian (%) and Current-Value Adjoint Vector ())

Firs: we divide % in (2.4) by at to obtain,

(2.6) = Fla, = F xu) + BEL £
t

Now we define the current-value adjoint vector 2, as in (1.13), i.e.,

(2.7) A(t) = p(t)/aft

witn (2.7), we can rewriteA*in (2.6) and the difference equation in (2.5)

as:
(2.8) M= F (x,u) + A(t+1) £ (x,0)8,
N 3 M
where,
o's
0!
(2.10) Bt = —&__ , and
t
o - o
N = ¢ SUN -
(2.11) q({t) = - " (8,~1) .
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It is frequently appropriate to make the important stationarity

assumption, i,e.,

F, (x(£),u(t)) = F(x(t),u(t))

(2.12) £, (x(t),u(t)) = £(x(t),u(t))

B, = B
where the right hand sides are explicitly independent of t with f constant.

Under the stationarity assumption (2.12), o

A aat, so that

at = Bt (since o, = 1). The condition (2+3) becomes g < 1.
In usual economic processes with infinite horizon, the stationarity

(2.12) is assumed to hold. One such case is treated in {8]. 1In this case,

(2.13) g=12

n<r
where, n is the rate of population growth and r is the social discounting
rate. Using (2.10, 2,11, 2.13), the current-value system (2.8, 2.9) for

this case, assumes the autonomous form.

J= F(x,u) + A(t+l) £(x,u) %—E

(2.14) 3 A

M (t) = (r-n) A(t+l) - ax(t)

Finally, wz note that a sufficiency theorem, analogous to the one

in the continuous case, holds in this case.

3. An Optimal Control Problem with a Constant Lag in Controléj

In this section, we shall treat an important special case of the
constant lag optimal control problem, i.e,, a problem in which the lag
appears only in the control variable. Mathematically stated, the control

problem is.

(3.1) max [ a(t) F(x(t),u(t))de
ue O
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subject to the differential-difference equation

(3.2) x(t) = £(x(t), u(t), u(t-m),

with the initial conditions (x(0) = x and u(t) = u(t) for tels,0).
Since;?ﬁnctions F and f are already assumed to be explicitly

independent of time t, all we need to complete the stationarity assumption,

similar to (1.21) in Section 1, is to assume:

(3.3) a(t) =e T8, r>o.

St.adard Hamiltonian (#) Formulation

Specializing the results in Kharatishvili [6] for the problem (3.1, 3.2), we
obtain the Hamiltonian~ﬁ-as,
(3.41~ uZZ(x(t), x(t+7), p(t), p(t+T), u(t), u(t-1), u(t+T)) = a(t) F(x(t),u(r))
+ PCEIECR(E) ,u(E) ,u(E-T))

+ @(O)F(x(t),u(t)) + p()E(x(t),ult),ule=-)] _

where tne present-value adjoint vector p(t) satisfies the differential-

difference equation,

3 A
dr(t)

(3.5) p(t) = -

Note that the first term in the square brackets in (3.4) does not depend on
u(t), and hence it can be dropped from the Hamiltonian M, if desired. We
will, however, keep it to show the relationship between Kharatishvili {6} and

Budelis-Bryson [4].

Current-Value Hamiltonian (M) and Current-Value Adjoint Vector ()\)

To get the current-value Hamiltonian &, we divide in (3.4) by a(t)

as before and rewrite it as,

3.6 A0 = 2 rao,ue) + B8 fx(e),u(0),u ()

QEFTIF(x(E+T) ,u(t+T)) + B§%§§l £(x(t+1), u(t+1), u(t)).
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Now, as in (1.13), we define the current-value adjoint vector A(t) by the
relation,
(3.7 A(t) = p(t)/a(t)

With this definition of A(t) and the fact that a(t + 1) = a(t)a(T)
for the form of a(t) assumed in (3.3), we can rewrite the current-value
Hamiltonian® in (3.6) as:

(3.8) M=), x(t+1) , A (), A (tHT) ,ult) ,u(t-1) ,ut+r)) = F(x(t),u(t))

+ A(t) £ (x(t),u(t),u(t-1) + @(TIF(x(t+71),u(t+T))

+ (1) A(t+T) £ (x(t+1),u(t+r),u(t)).
It is a simple matter to obtain the corresponding adjoint equation

by differentiating (3.7) and using (3.3, 3.5, 3.7). The equation is,

AH
ax(t) °

(3.9) A(E) = TA(E) -
Once again, we have been able to transform the original non-auto-

nomous system (3.2, 3.4, 3.5) into the autonomous system (3.2, 3.8, 3.9).

This transformation, as noted before, is a useful one in analyzing the

long-run stationary equilibrium of the economic system under consideration {8}.

We will also state the maximum principle in this case.

Theorem: Maximum Principle:

If x*(t), u*(t), A*(t) is an optimal trajectory, then it must
satisfy (3.2, 3.9), and
(3.10) N (x*(t),x*(t+'r), )\*(t),).*(t*-'r), u*(t),u*(t-T)u*(tﬂ)) >
H (), 41, 270,07 (040 v, 0le-1) 0" (@)
Huel and ¥t.
Budelis and Bryson [4] use calculus of variations to arrive at some-

what restricted results, They define their Hamiltonian, f‘h, corresponding

to which, the current-value Hamiltonian,*®_, is
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(G.11) gy = FO:(0),u(0)) + Ag(e) £(x(E),u(e),ule-1)

where

aﬂB

(3.12) XB = r XB(t) - S;?ES .

Assuming the optimal control in the interior of 1, they derive the

necessary conditionll, which in the current-value form, is

%5 >%5
G2 w5y T | e, "0

t=t+T

4. An Optimal Control Problem with Continuous Lagsgl

The problem of this section arises in ge uralizing the
problem treated in the previous section with respect to its lag structure.
Mathematically, we can state the problem as one of maximizing (3.1) subject
to the integro-differential equ:tion (alsc knowm as phase equation),

(4.1) x = £(x(t),u(t)) + [ g(z(1),u(n), 7, t)dr

with the initizl conditions x(t) = x(t), ¥t < 0 and u(t) = u(t), ¥t < 0.
We will 2lso assume a(t) to be of the form (3.3).

Standard Hamiltonian (J%) Formulation

With a slight extensionof the results in Bate[2], we can define & as
(4.2) F(x(t), pr > t), u(t)) = a(t)F(x(t),u(t)) + p()E(x(t),u(t))

+ [ p(ma(x(t),u(t),t,mdr
t

where, as before, the adjoint vector p(t) satisfies the integro~differential

equation:

-

3
x(t)

(6.3) p(t) =

Remark: We advise the reader to compare the integrals in (4.1) and (4.2).
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Current-Value Hamiltonian (7f) and Current-Value Adjoint Vector ())

As before, the current-value Hamiltonian }{ is obtained by dividing

" in (4.2) by a(t), i.e.,

My < RO L R(E) |
(4.4) HO) = 55 = FOx(®),u(e)) + gt £(x(6),u(E))

1 (-~
+ a(t) \rt p(Mg(x(t),u(t),t, 7)dr

Now we define A(t) = p(t)/a(t) as in (3.7). With this definition
and the observation that a(t) = a(t-T)@(T) for the exponential form of «a(T) as
assumed in (3.3), we can rewrite the curreat-value Hamiltonian.Ji in (4.4) in
terms of the variables x(t), A(T > t), and u(t), i.e.,

(4.5) Hx(e) (= £),u(e)) = F(x(£),u(e)) + A(e) £ (x(t),u(t)) |

+ [ a(r-o(Dex(t),u(t),t,7)dT. ;
t

Now we can differentiate the defining relation for A(t) and then

using (3.3, 4.3, 4.4) we can obtain “he corresponding adjoint equation

. d ¥
(4.6) A(t) = A (t) - = (E)
a ¥ .
For this case, we will expand 3% (E) to see that the adjoint equation

for A(t) is an integro-differential equation with leads as opposed to the
state equation in (4.1).which is an integro-differential equation with lags.
In its expanded form, the adjoint equation (4.6) is,

(6.7) A(e) = [x - £ (x(£),u(e))IN(E) - F, (x(t),u(t))
(-]
- f a(T-t)X(T)gx(x(t),u(t), t, t)dT,
t
where the subscript x denotes partial differentiation with respect to x.

Unlike the firs+< three sections, the system (4.1, 4.5, 4.6) is oot autonomous

in general. We must mention, however, that in the economic model developed in [9]
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has function g explicitly independent of x. This will render the
adjoirt systems (4.7) cxplicitly independent of time. Furthermore, in [9],
the Hamiltonianv&and the equaiion (4.1) depends on time t in such a way
that it permits us to prove the existence and unigueness of the long-run
stationary equilibrium,

Finally, a slight extens:ion of Bate [2] of this section, which can
be stated in current-value form as the fcllowing :theorem:

Theorem: Maximum Principle: If F, f, g are differentiable with respect

to x, and if u*(-) is an optimal control for the system (3.1, 4.1), with
x*(-) as the correspcnding trajectory, then it is necessary that
i) There exitt a nonzero vector function of time x*(-) satisfying
(4.6) with x(+) = x (+) and u(.) = u ().
ii) The optimzl control u*(t) satisfies

* * * & L
M (E),h (T > t),u (E)) > A(x (t),A (T>t), u)  Wuel.

5. Concluding Remarks.

Except for the continuous lag case in section 4, the current-value
transformation renders the system explicitly time-independent and hence
autonomous, under the stationarity assumption., Such systems allow long-run

stationary equilibriums, a concept which is extremely important in economic

analyses.
A natural consequence of the transformation is the current-value interpre-
tations of the transformed adjoint variables ). That is, x(to) is a

vector of marginal returns associated with the phase vector x(to) when the

returns are assumed to be discounted to time t = to and not to time t = 0 as
wotild be the case for the standard adjoint vector p(to). Discounting the
returns to time t = to is more natural since this is the beginning of the

range of interest at that time.
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We also note that given the current-value Hamiltonianv”b, the
relation which the current-value adjoint vector A must satisfy, has

the same form in all cases, i.e.,

. v 2
(5.1) A(E) = q(EIA(L) - %;-(—5

where q(t) = ~ &(t)/o(t).

It is very important to emphasize the fact that the form of the equation
for the current-value adjoint vector A in relation to the current-value
Hamiltenian J* is different from the relationship between the form of the
equation for the standard adjoint vector p and the standard Hamiltonianxiz.

The impact of this difference can be seen if we take the time derivative

of the current value Hamiltonian.-,

& _3F DM . BN X du
(5.2) dt ot + dx x + 2 » du dt °

Since # is explicitly independent of time, the first term is zero.

Since, either ggik = 0 or %% = 0 on the optimal path, the last term vanishes

on this path, Therefore, we have

3N ;(.,.M;\

(5.3) % ) :

d»
dt

Furthermore, the canonical form of the state equation remains unchanged

. 7 72
because x = 3% = Eleq . This together with (5.1) reduces 4 in (5.3) as
op o dt
dw | 3M ., . %
(5.4) c > Xt X [qr o
= x q A
£0

Notice, that if ¥ yere independent of time, i.e., if original system

d -
were autonomous, Tﬁ? = 0. This meant that # = constant would have provided
the first integral of the resulting boundary value problem. Not so (as noted

before in Footnote 3), however, in the transformed autonomous systenm,
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FOOTNOTES

1. This entir> section is based on [1l, Chap. 2]. For economic problems
of this type; see [1,5].

2. For an excellent discussion of transversality conditions in infinite
horizon cases, refer to [1, Chap. 2].

3. It should be warned that on account of the nonstandard form of (1.25)
in the autonomous system (1.23 - 1.25), # = constant no longer provides
the first integral of the two-point boundary-value problem (1.1 , 1.16)
in the finite horizon case and the problem (1.23, 1.25) in infinite
horizon case,

4, For a partial proof of this theorem, see [1, Chap. 2].

5. This type of problem in economics are either the discrete counterpart
of the problem in Sec. 1 or they are discrete approximation of complex
problems involving lags [7,9]).

6. This type of problems frequently occur in economic theory. The usual
examples are models involving labor where it takes a fixed amount of time,
T, to train a labor. Such mcdels are treated in [3,8].

7. To put Budelis-Bryson [4] results in relation to Kharatishvili [6], we note

1) =% +a(n) H.1 L cf. (3.8 and 3.11)
1i) A = iB cf. (3.9 and 3.12)
dH g /2
N B _B__ =
iii) () - TS + a(T) TI)) ]t=t+7 0 cf. (3.10 and 3.13)

8. This is the most general problem treated in this paper. The existence
theory for this problem is still incomplete. Necessary conditions have

been obtained by Bates [2] for a problem of slightly less general form.
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In economics, this problem provides a more general and more realistic
framework than the constant lag problem located in the previous
section. 1In [9], we apply th{s theory to a heterogeneous labor
model., Several other economic applications are possible, however,

the only one reported in the economic literature is in [9].
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